

Aplicaciones Pacificas de la Tecnología Nuclear

OIEA RLA0059-1803201: Taller para Nuevos Lideres en Campos Nucleares, San Pablo, Brasil (11 - 15 Febrero 2019)

Marilia Caraballo₁, Noelia Pagliaro₁, Ingrid Kreimerman₂, Florencia Zoppolo₂,

Ghinnelle Tilliman₃, Emilia Tejería₄

1-DINAMIGE, Ministerio Energía y Minería

2-Centro Uruguayo de Imagenología Molecular

3-Escuela Universitaria de Tecnología Médica, Facultad de Medicina, UdelaR

4-Área de Radioquímica, Facultad de Química, UdelaR

Montevideo, Uruguay

Áreas de Aplicación

SALUD

Medicina Nuclear

Radioterapia

Imagenología

Producción de radionucleidos

Ciclotrón

Reactor nuclear

Generador

Medicina Nuclear

Diagnóstico

- Radiación de alto poder de penetración.
- Emisión gamma.
- T_{1/2} corto.

Terapia

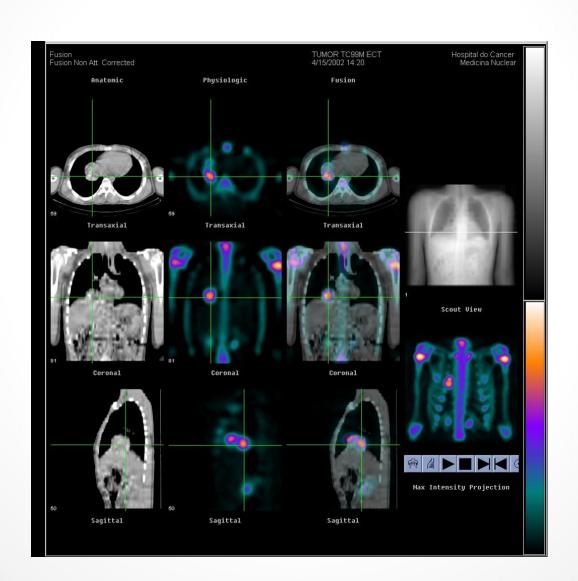
- Radiación de bajo poder de penetración (emisión β⁻, emisión α).
- T_{1/2} efectivo intermedio.

Aplicación diagnóstica en Medicina Nuclear

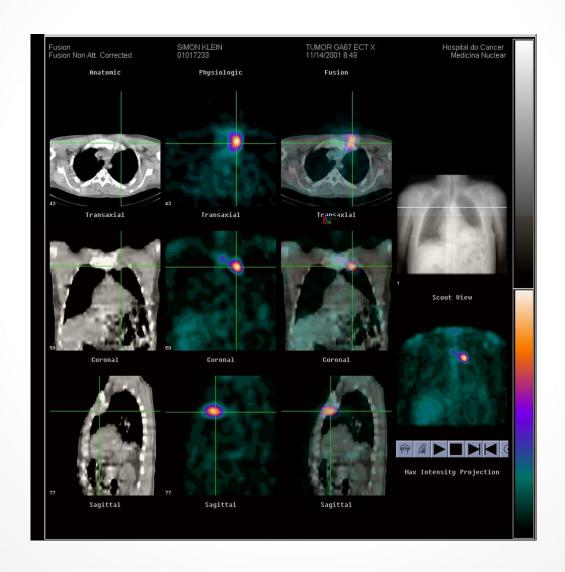
Los Radiofármacos permiten diferenciar una anatomía o fisiología anormal de una normal

El radiofármaco es preparado y administrado al paciente, generalmente por vía intravenosa

La radiación
emitida es
medida
externamente
al paciente con
equipamiento
adecuado

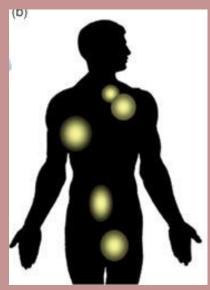


El patrón de distribución de la actividad en el órgano en estudio permite diagnosticar diversas patologías



SPECT-CT en metástasis pulmonar (99mTc-MDP)

SPECT-CT Linfoma de Hodgkin(⁶⁷Galio)


Aplicación terapéutica en Medicina Nuclear

El objetivo es destruir las células causantes de la enfermedad por acción de la radiación emitida por un radiofármaco administrado en forma sistémica.

El radiofármaco
es preparado y
administrado al
paciente,
generalmente
por vía
intravenosa

El radiofármaco se acumula selectivamente en las células tumorales y la energía emitida las destruye.

Radioterapia

Es la utilización de la radiación ionizante con fin terapéutico

Teleterapia
Co 60
Acelerador lineal
de diferentes
energías

Braquiterapia Fuentes selladas de Co⁶⁰, Cs¹³⁷ y Ir¹⁹²

Imagenología

Es la utilización de la radiación ionizante con fin diagnóstico

Tomógrafo

Arco en c

ALIMENTACIÓN

Irradiación de alimentos

 La irradiación de alimentos es una técnica para la preservación y desinfección de alimentos.

 Los alimentos se someten a la radiación para eliminar los insectos o reducir la carga de los microorganismos que dañan la salud y colaboran para detener el deterioro de los alimentos.

Muestra no irradiada

Muestra irradiada

Beneficios sociales y económicos

Radura

Seguridad Alimenticia

Mejora la calidad

Reduce la velocidad de descomposición

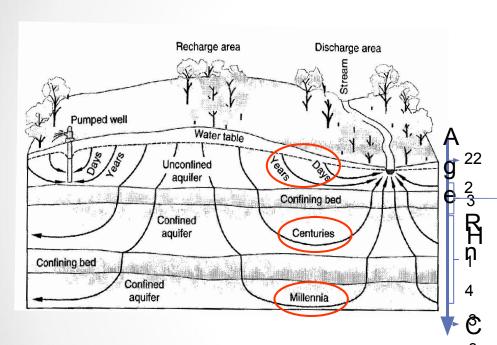
Ventajas económicas

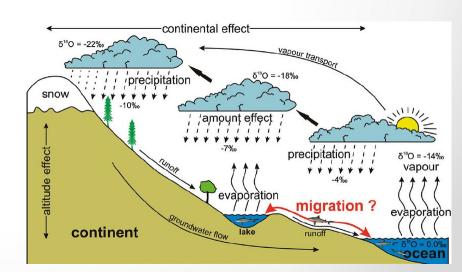
la irradiación de alimentos

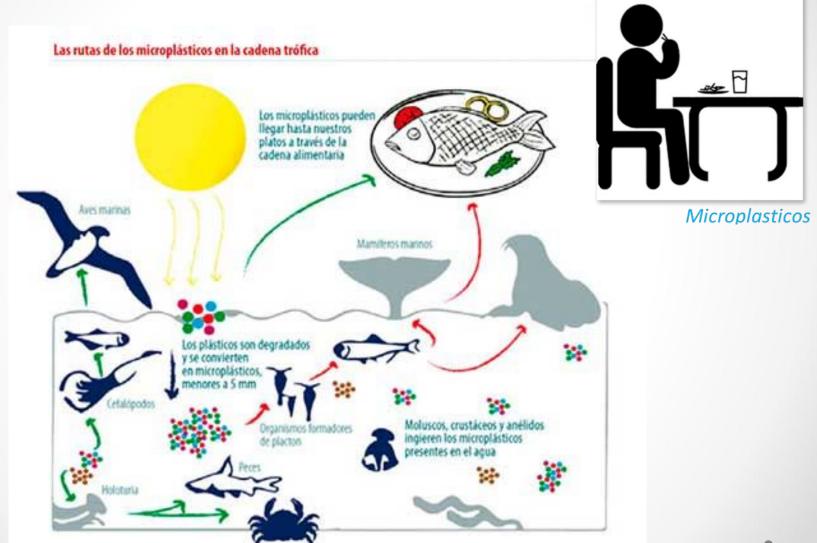
Beneficios	Rango efectivo de dosis (kGy)	Alimentos
Dosis baja (hasta 1 kGy)		
(i) Inhibición de la germinación	0.05 - 0.15	Patatas, cebollas, ajos, jengibre, ñame, etc.
 (ii) Desinfectación de insectos y desinfección de parásitos 	0.15 - 0.5	Cereales y legumbres, frutas fresca y secas, pescado y carnes secas, carne fresca de cerdo, etc
(iii)Retraso de procesos fisiológicos (ej. maduración)	0.25 – 1.0	Frutas y verduras frescas
Dosis media (1-10 kGy)		
(i) Extensión de la vida útil	1.0 - 3.0	Pescado fresco, fresas, setas, etc
(ii) Eliminación de microorganismos alterantes y patógenos	1.0 - 7.0	Mariscos frescos y congelados, pollo y carne fresca y congelada, etc.
(iii) Mejora de las propiedades tecnológicas de los alimentos	2.0 - 7.0	Uvas (incremento del rendimiento en mosto), vegetales deshidratados (reducción del tiempo de cocción), etc.
Dosis alta (10-50 kGy)		
 (i) Esterilización industrial (en combinación con temperaturas moderadas) 	30 - 50	Carne, pollo, mariscos, alimentos preparados, dietas hospitalarias esterilizadas
 (ii) Descontaminación de ciertos aditivos alimentarios e ingredientes 	10 - 50	Especias, preparaciones enzimáticas, goma natural, etc

 \bot

1




MEDIO AMBIENTE


Recursos hídricos

El uso de tecnologías nucleares e isotópicas permite:

- Datar
- Estimar el tiempo de residencia del agua en un reservorio
- Determinar la procedencia del agua
- Identificar y cuantificar metales

Agricultura


- La irradiación de semillas provoca cambios genéticos beneficiosos para el cultivo de las plantas.
- El uso de isótopos radiactivos permite el seguimiento de asimilación de nutrientes.
- Control biológico de plagas: esterilización de moscas machos para evitar su reproducción.

Efluentes

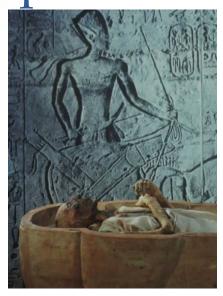
 Tratamiento de efluentes de producción química, farmacéutica y petrolera mediante irradiación por haz de electrones

Unidad móvil con acelerador de electrones para tratamiento de efluentes in situ

INDUSTRIA

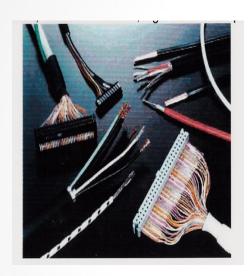
Industria

Esterilización de materiales de uso médico, farmacéutico y productos biológicos mediante irradiación gamma y haz de electrones.

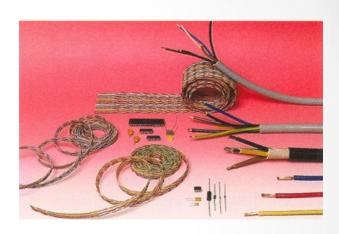


Desinfección y conservación de

patrimonio cultural



Eliminación de hongos e insectos en:


- Libros
- Muebles
- Esculturas
- Pinturas

Industria

- Mejora las propiedades mecánicas.
- Aumenta la resistencia del material.
- Mejoramiento de piedras preciosas.

Gammagrafía industrial

- Método de ensayo no destructivo que se basa en la diferente absorción a la radiación de la pieza que está siendo inspeccionada. Esta absorción depende de la densidad del material, de variaciones de espesor o de su composición química
- La diferencia de absorción a la radiación puede ser detectada a través de películas radiográficas.
- Se aplica, en la inspección o control de calidad de, soldaduras, placas fundidas y forjadas, tuberías y construcción civil

Generación de energía

Medidores industriales

Áreas de Aplicación

Agradecimientos: Organismo Internacional de Energía Atómica, Instituto de Pesquisas Energéticas e Nucleares Ciência e Tecnologia a serviço da vida y Martin BRAINon •